Nucleosynthesis and Neutrinos in Core-collapse Supernovae

Carla Fröhlich North Carolina State University

Outline

- Nucleosynthesis sites
- Observational abundance trends
 - Heavy elements
 - Fe-group elements
- Supernova nucleosynthesis and neutrinos
 - Explosion models
 - Proton-to-neutron ratio
 - Neutrino-induced nucleosynthesis, vp-process

Nucleosynthesis Sites

```
Massive stars (M>10Msun) and SNe II

Synthesis of the nuclear species from O to Zn

Heavy elements: r-process, p-process, vp-process
```

Red giants (AGB stars)
Carbon
S-process elements

SNe Ia

½ to 2/3 of iron peak nuclei not produced by SNe II

Novae

May be significant source of ¹³C, ¹⁵N, and ¹⁷O in galactic matter May be source of presolair grains

Stellar Lifetimes and Metal-Poor Stars

Solar System Abundances

Goal: understanding the solar chemical composition

A "complete" pattern

Scaled solar system r-process

Mello et al (2013)

Comparison to theoretical models

Mello et al (2013)

Heavy elements in r-rich stars

CS 22892-052 HD 115444 BD +17 3248 CS 31082-001 HD 221170 HE 1523-0901 CS 22953-03 HE 2327-5642 CS 2941-069 HE 1219-0312

Observational Trends

- Heavy n-capture elements
 - Seems robust (and understood)

Heavy elements in r-rich stars

CS 22892-052 HD 115444 BD +17 3248 CS 31082-001 HD 221170 HE 1523-0901 CS 22953-03 HE 2327-5642 CS 2941-069 HE 1219-0312

Light n-capture elements

Observational Trends

- Heavy n-capture elements
 - Seems robust (and understood)
- Light n-capture elements
 - Confusing situation

Sr and Ba in metal-poor stars

Figure: S. Bisterzo Data: SAGA (Suda et al 2008)

large scatter in Sr/Ba at low metallicities

→ evidence for a independent process producing Sr but not Ba at low metallicities.

No known metal-poor star without neutroncapture elements?

Sr, Y, Zr

→ Non-correlation of Sr, Y, Zr, Pd and Ag in metal-poor halo stars with Eu nor Ba

Observational Trends

- Heavy n-capture elements
 - Seems robust (and understood)
- Light n-capture elements
 - Confusing situation

 Interesting situation
 - Large scatter
 - Various processes proposed: LEPP, vp-process, weak r-process, ???

Trends with Metallicity

Fe-peak elements

McWilliam 1997

Fe-group nucleosynthesis

- Explosive Si-burning
- All reactions in equilibirum
 - \rightarrow Y=Y(Yn, Yp, ρ , T)
- Max temp
 → amount of unburned material (Si)
- Max density

 amount of Fe versus
 free p and α

Neutrino-interactions matter; the electron fraction Ye matters

$$[X/Fe] = log_{10} [(X/Fe)/(X/Fe)_{sol}]$$

Supernova Nucleosynthesis

- Oxygen and alpha-elements (Ne, Mg, Ca)
 - (γ, α) reactions on O and Ne
- Silicon, sulfur, calcium
 - Explosive oxygen burning through ¹⁶O + ¹⁶O
- Fe-group elements (Ti to Zn, mainly ⁵⁶Ni)
 - Explosive nucleosynthesis through (α, γ)
- Heavy elements (r-process??)
- Weak s-process (core He-burning)
- "Lighter heavy elements" (vp-process)
- p-nuclei (γ-process)
- 11B, 19F, 138La, 180Ta (v-process)
 - (v,v') and (v_e,e^-) reactions

Core-Collapse Supernovae

Credit: Thielemann

H-burning

He-burning

10⁶ years

C-burning 10³ years

Ne-burning

O-burning

Si-burning

3 years

0.8 years

1 week

Core-Collapse Supernovae

3D, SASI, acoustic modes, MHD, rotation, collective neutrino flavor oscillations, magic, ???

Simulations of Core-Collapse SNe

No explosions in spherical symmetry (*)

Many ongoing efforts in multi-D

- ⇒ Computationally expensive
- ⇒ But we still want to study supernova nucleosynthesis
 - ⇒ Artificial explosions

SN models for nucleosynthesis

In spherical symmetry need to artificially trigger the explosion:

1. Thermal bomb / piston: initiate explosion by increasing temperature or placing a piston in the star

Limitations:
 misses physics of collapse,
 bounce, and onset of
 explosion

Supernova Nucleosynthesis

What happens during collapse and bounce? Electron fraction? How has this material changed before it gets shocked?

Shock ejection

Location of the mass cut?

Effect of neutrinos?

Bru

Effect of neutrinos

Supernova dynamics

Deposit energy to revive stalled shock

→ neutrinos can be used to trigger a more realistic induced explosion

Neutron-to-proton ratio (electron fraction)

Neutron-rich (r-process)

Proton-rich (vp-process)

→ neutrino energies and luminosities are important

Neutrino-induced nucleosynthesis (vp-process; v-process)

SN models for nucleosynthesis

2. Absorption: Mimics the effects of multi-D simulations in 1D

Convection in the heating region → more efficient

energy deposition

$$u_e + n \leftrightarrow e^- + p$$
 $\overline{\nu}_e + p \leftrightarrow e^+ + n$

- Increased neutrino absorption and emission rates (in the heating region) by a constant factor
- Limitations: large factors change the system beyond energy deposition

Effect of neutrinos

- Supernova dynamics
 - Deposit energy to revive stalled shock
 - neutrinos can be used to trigger a more realistic induced explosion
- Neutron-to-proton ratio (electron fraction)
 - Neutron-rich (r-process??)
 - Proton-rich (vp-process)
 - > neutrino energies and luminosities are important
- Neutrino-induced nucleosynthesis (vp-process; v-process)

Conditions in v-driven winds

Weak interactions set electron fraction Ye

$$u_e + n \leftrightarrow e^- + p$$
 $\overline{\nu}_e + p \leftrightarrow e^+ + n$

- R-process: high neutron-to-seed ratio (Y_n/Y_{seed} ~100)
 - Short expansion timescale (inhibits formation of seed nuclei)
 - High entropy (photons dissociate seed nuclei into nucleons)
 - Electron fraction Ye<0.5
- BUT: These conditions are not realized in recent simulations $s/k_B \sim 50-120$; $\tau \sim few ms$; Ye $\sim 0.4 0.6$

Neutron-to-proton ratio

Ye>0.5 is generic result of simulations with elaborate v-transport

- If the neutrino flux is sufficient (scales $1/r^2$):
- High density / low temperature → high E_F for electrons → e-captures dominate → n-rich
- If electron degeneracy lifted for high T \rightarrow v_e -captures dominate \rightarrow due to n-p mass difference, p-rich composition

Effect of neutrinos

- Supernova dynamics
 - Deposit energy to revive stalled shock
 - neutrinos can be used to trigger a more realistic induced explosion
- Neutron-to-proton ratio (electron fraction)
 - Neutron-rich (r-process??)
 - Proton-rich (vp-process)
 - > neutrino energies and luminosities are important
- Neutrino-induced nucleosynthesis (vp-process; v-process)

The vp-Process

- proton-rich matter is ejected under the influence of neutrino interactions
- true rp-process is limited by slow β decays, e.g. τ (64Ge)
- Neutron source:

$$\overline{\nu}_e + p \to n + e^+$$

 Antineutrinos help bridging long waiting points via (n,p) reactions:

$$(n,p)$$
 (p,γ)

The vp-Process

Nucleosynthesis

Wind termination shock

- Interaction of the neutrino-driven wind and the slow ejecta → wind termination shock
 - Deceleration and re-heating of material

Long-term hydordynamical simulations:

2D: ~2ms – 3s p.b. 1D: ~2ms – 10s p.b.

Wind termination shock

- Effects of wind termination
 - T9>3 GK: matter stays in NiCu cycle
 - T9=2GK: heavier elements produced
 - T9<1GK: expansion too fast for neutrinos to produce

Critical (and not so critical) reactions

Electron fraction of the ejecta

 How does the abundance pattern from v-driven wind simulations compare to the observed pattern in metal-poor stars.

Observed pattern reproduced Production of p-nuclei

Overproduction of A=90 (N=50)

→ Only a fraction of neutron-rich ejecta (Hoffman et al 1996)

8.8Msun model from Munich group:

Supernova model: 8.8Msun

Huedepohl et al (2010)

Rates for neutrino captures

• Includes collective neutrino effects

Nucleosynthesis calculations

Duan & Friedland

Seadrow & Frohlich

Summary & Conclusions

- Neutrinos are important for supernova dynamic and supernova nucleosynthesis
- Details set electron fraction and hence conditions for nucleosynthesis
- Observations indicate the need for an additional process (LEPP).
- The vp-process is a candidate for the LEPP.
- The vp-process nucleosynthesis depends on the detailed hydrodynamic conditions, nuclear physics, and neutrino physics.

Evidence for non-solar r-processes?

